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ABSTRACT. Cavity-tree density (CTD) is an important indicator of habitat quality for
cavity-dependent wildlife. However, the abundance of cavities and cavity trees can vary
dramatically, even among trees or stands with similar attributes. This uncertainty can make
it difficult to expand stand-level estimates of cavity abundance to large landscapes, although
it is often desirable to do so. This limits the utility of CTD as a measure of habitat quality. We
use a resampling method (statistical bootstrap) to construct a set of regression models to
predict CTD based on landscape age structure and landscape size. The estimated regression
coefficients are highly variable (in terms of the adjusted R2 and root mean square error) for
landscapes �100 ha, but the models perform well for larger landscapes. We test the
regression models using an independent data set from the Missouri Ozark Forest Ecosystem
Project (MOFEP) and find that the mean relative error (RE) when predicting CTD for land-
scapes between 300 and 4,000 ha is less than 10%. Both the size (in hectares) of the
landscape and the stand age-class components affect RE; but RE decreases with increasing
landscape size in a consistent and quantifiable manner. For Ozark landscapes �100 ha,
knowledge of the proportion of the area in the seedling/sapling, pole, sawtimber, and
old-growth age classes can be used to readily estimate the number of cavity trees and how
that number will change if the landscape age structure is altered. FOR. SCI. 50(5):603–609.
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CAVITY TREES (EITHER LIVE OR DEAD) are trees with
holes or other structures large enough to shelter
animals. They are integral components of forest

ecosystems and provide habitat for a wide variety of wild-
life species (e.g., Conner et al. 1975, Scott et al. 1977, Titus
1983, McClelland and McClelland 1999). At the landscape
level, cavity-tree density (CTD) is an important measure of

habitat quality. In Missouri, for example, wildlife manage-
ment guides recommend maintaining 17 cavity trees per
hectare to meet the needs of wildlife (Titus 1983).

Formation of cavities begins when a tree or part of a tree
dies or is injured by a disturbance event such as fire, insect
attack, disease, animal excavation, or mechanical injury (Carey
1983). The spatially stochastic nature of the cavity-formation
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process often causes the abundance of cavities to vary
widely among trees and the abundance of cavity trees to
vary widely among stands (plots), even when the trees or
stands are similar in many other respects (Fan et al. 2003a,
2003b). Moreover, unlike conifer forests where most cavity
trees (�90%) are dead (snags), over 80% of cavity trees in
Missouri and many central hardwood forests are alive
(Goodburn and Lorimer 1998, Fan et al. 2003a). These
factors complicate the detection, monitoring, and manage-
ment of the cavity-tree resource in hardwood forests be-
cause cavities in live trees can be difficult to detect, the
occurrence of cavities or cavity trees is difficult to accu-
rately predict at the tree and stand level, and live cavity trees
are often targets for removal in silvicultural practices.

A comprehensive approach to cavity-tree estimation and
management requires consideration of multiple spatial
scales, including trees, stands, and landscapes. Tree and
stand attributes that are regularly used to guide forest man-
agement (e.g., age, species, size structure) are not particu-
larly good predictors of the abundance of cavity trees for
small cohorts or individual stands. However, for large pop-
ulations of similar trees or of similar stands, those attributes
have been used effectively to predict mean cavity-tree abun-
dance (e.g., Carey 1983) and probabilities of cavity-tree
occurrence and abundance (e.g., Fan et al. 2003a, 2003b).
The latter specifically models the variation in cavity
abundance.

In concept, cavity-tree abundance on a landscape can be
derived by simply summing the observed or estimated num-
ber of cavity trees found there. In practice, however, aggre-
gation of information about individual trees is impractical
for large landscapes because of the cost of acquiring tree-
level data. Stands (or plots) have proven to be a more
suitable scale for estimating landscape-level resource char-
acteristics via aggregation (Baskerville 1992). Two compo-
nents are needed to predict cavity-tree abundance and dy-
namics on a landscape level: a stand-level (or plot-level)
model that estimates the distribution of cavity trees and an
algorithm to aggregate predictions to the landscape scale
(e.g., linear weighted averaging or stochastic resampling
methods). A stand-level cavity-tree model can either predict
the mean cavity abundance per stand (e.g., standard regres-
sion or a generalized additive model) or define a probability
density function describing probabilities of cavity abun-
dance for a range of stand conditions. Because cavity trees
are relatively rare (approximately 1–3% of all trees) and
highly variable among stands (plots), stand-level models
that predict only mean cavity-tree abundance overlook in-
teresting information about variation in the cavity-tree re-
source and are often imprecise (e.g., Carey 1983).

Fan et al. (2003a, 2003b) used stand-age classes to pre-
dict the probability associated with a range of cavity abun-
dance values, thus incorporating the stochastic nature of
CTD into the estimate at the stand level. We applied that
model to thousands of hypothetical landscapes and nine real
landscapes to explore effects of landscape size and age
structure on CTD. Specifically, we applied a resampling
technique (bootstrap) and used the results to examine how

landscape size affects the precision of estimated mean cav-
ity-tree abundance. We (1) simulated the CTD for a wide
range of landscape age structures, (2) quantified the effect
of the landscape size on the precision of estimates of CTD
and on the relationship of CTD to landscape age structure,
(3) developed a simplified regression model for large land-
scapes that is suitable for estimating cavity-tree abundance
based solely on landscape area by age class, and (4) tested
the regression model with an independent data set. The
models can be linked to stand inventories to estimate or
monitor cavity-tree abundance for landscapes where the
stand ages are known. Moreover, this information can help
resource managers and planners forecast the impact of man-
agement activities (e.g., those that alter stand ages) on the
future cavity resource.

Methods

Landscape-Level Resource Assessment
and Monitoring

From a statistical perspective, a landscape is a finite
population U composed of individual units (patches) U1,
U2, . . . , Un differing in a resource of interest y (such as
cavity trees). The distribution and quantity of y is expected
to be similar within individual units (not necessarily con-
tiguous in space), but to differ among the units. One way to
estimate the total or mean of y on U is to independently take
a random sample from units U1, U2, . . . , Un, and then
calculate the weighted mean or total as in a typical stratified
sample. Because landscapes constantly change in response
to disturbances (e.g., fire, wind, insects, disease, timber
harvest), more often than not our interest is in estimating the
change in y relative to the change in units U1, U2, . . . , Un.
To predict the dynamics of a resource y on a landscape, it is
often possible to (1) derive a distribution (e.g., a probability
density function) describing resource y over a wide range of
stand conditions, (2) use that model to estimate resource
levels for landscape units (e.g., stands) at different points in
time, and (3) accumulate results for individual units to get
landscape estimates over time. This is commonly done in
forest yield and structure projection (e.g., Hyink and Moser
1983, Daniels and Burkhart 1988, Borders and Patterson
1990, Ritchie and Hann 1997) using either deterministic
methods (e.g., predicting mean values using regression) or
stochastic methods (e.g., estimating values by repeated
draws from a probability density function). Both methods
are compatible if the landscape is large. However, if interest
lies not only in the projected mean values but also in the
variability of resource y on different landscapes, the sto-
chastic estimation method will be the better choice, and it is
the approach used in this study.

Three components are required to estimate the dynamics
of CTD stochastically via computer simulation: (1) the
landscape age structure (the distribution of patches by age
class); (2) the cavity-tree distribution by age classes; and (3)
a stochastic method to generate CTD by age classes (e.g.,
the statistical bootstrap) (Efron 1979, 1982, Efron and Tib-
shirani 1993).
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Landscape Age Structure
The age structure of a forest landscape is defined as the

age-class distribution of the patches on the landscape. Be-
cause it is often difficult to obtain the actual age for all the
patches on a landscape, stand-age classes or size classes are
most often used in forest management. Generally, given a
forest landscape of size s with n age classes, the landscape
age structure can be expressed numerically as

w � �w1, w2, . . . wn� � �s1/s, s2/s, . . . , sn/s), (1)

where w � (w1, w2, . . . , wn) and s � (s1, s2, . . . , sn) are,
respectively, the n-dimensional array of weights (i.e., pro-
portions by age class) and class sizes (i.e., hectares) of age
classes (i � 1, 2, . . . , n), and ¥i�1

n wi � 1, ¥i�1
n si � s.

It has been shown previously (Fan et al. 2003a) that
broad age classes can be used to describe cavity-tree abun-
dance by age class. Thus, we classified all stands on a
landscape into four age classes: 1–30 years
(seedling/sapling), 31–50 years (pole), 51 to 120 years
(sawtimber), and �120 years (old-growth remnants). Con-
sequently, the n-dimensional landscape age structure in
Equation 1 was simplified to a four-dimensional age-class
structure, w � (w1, w2, w3, w4).

Forest landscapes may be composed of an infinite variety
of stand age structures as a result of their disturbance
history. We simulated a wide variety of landscape age
structures by generating four (the number of age classes)
distinct random numbers xi (i � 1, 2, 3, 4) between zero and
one (i.e., uniform pseudorandom number generator) and
then calculating a random set of weights wi (i � 1, 2, 3, 4)
of each age class as

wi �
xi

�
i�1

4

xi

�i � 1, 2, 3, 4�. (2)

For this study, we constructed 360,000 sets of weights
representing different landscape conditions (18 landscape
sizes � 200 age-class combinations � 100 replicates). For
landscapes of differing size s (hectares), we calculated the
corresponding size (in hectares) of each of the four age
classes on the landscape as

si � s � wi �i � 1, 2, 3, 4�. (3)

Distribution of Cavity Trees by Stand-Age Classes
At the stand level, the distribution of CTD within each

age class was depicted by a three-parameter Weibull func-
tion (Bailey and Dell 1973). The model is of the form

f � z� �
a

b�z � c

b � a�1

exp���z � c

b �a�, (4)

where z � 0, 1, . . . , 15 represents intervals (classes) of
CTD: 0, 0.1–10.0, 10.1–20, . . . , 145.1–150.0 trees/ha; and
f (z) is the associated probability (Figure 1). Parameter es-
timates for Equation 4 (P � 0.0001 for all parameteriza-
tions) were previously derived for the seedling/sapling (a �
0.6875, b � 0.8663, c � �0.2832), pole (a � 0.8387, b �

2.3736, c � �0.1407), sawtimber (a � 1.4529, b � 3.5152,
c � �2.3568), and old-growth age classes (a � 2.228, b �
7.1656, c � �0.8734) by Fan et al. (2003a).

Estimation of CTD on a Landscape Using the
Bootstrap Method

Given a landscape with specified area and age structure
defined as weights (Equation 1), for each hectare of the
landscape we first randomly drew a CTD interval based on
the cumulative Weibull probability (Figure 1) and then
randomly drew a specific CTD within the designated inter-
val. We calculated CTD on each landscape as

CTD �
�i�1

4 �j�1
si CTDij

s
. (5)

We repeated this process 200 times for each of 18 different
landscape sizes (10, 20, 40, 80, 100, 200, 400, 800, 1,000,
2,000, 4,000, 8,000, 10,000, 20,000, 40,000, 80,000,
100,000 and 1,000,000 ha) to create 200 alternative combi-
nations of weights (w1, w2, w3, and w4) and CTD
(number/ha) for each in the application of the bootstrap
method (Efron 1979, 1982, Efron and Tibshirani 1993).

We then combined the CTD estimates for each landscape
size and regressed CTD against the weights of three age
classes (w1, w2, w3) in a linear model to predict CTD per
hectare for a landscape with any given age structure,

CTD � �0 � �1w1 � �2w2 � �3w3 � �. (6)

Because the sum of the four weights (w1, w2, w3, w4)
always � 1, CTD can be estimated from weights for three
of the four size classes with the coefficient for the fourth
size class (w4) included in the constant term, �0. However,
Model 6 can be rewritten

CTD � ��0 � �1�w1 � ��0 � �2�w2

� ��0 � �3�w3 � �0w4 � �, (7)

so the coefficients for each weight explicitly indicate the
number of cavity trees per hectare expected in that stand-
size class.

Given the variability associated with cavity-tree esti-
mates at the stand (or plot) scale (Table 1), the variability

Figure 1. Probability of various densities of cavity trees per
hectare by stand size class. Based on Fan et al. (2003a) and
Equation 4 using discrete CTD classes.
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associated with the landscape estimate of mean CTD per
hectare in the Model 6 will have higher variability for small
landscapes than for large landscapes. To evaluate the effect
of the landscape size on CTD, we calculated the mean and
standard error for the estimated parameters (�0, �1, �2, and
�3) for landscapes of varying sizes by repeating the entire
experiment 100 times for each landscape size. This provided
robust estimates (mean and standard error) of the coeffi-
cients in Model 6 applicable to a wide range of landscape
conditions.

Validation of the Fitted Regression Model
We used an independent cavity-tree data set from the

Missouri Ozark Forest Ecosystem Project (MOFEP) (Jensen
et al. 2002) to examine the accuracy of the landscape-level
regression Model 6. MOFEP is a long-term experiment
initiated in 1989 by the Missouri Department of Conserva-
tion to evaluate the effects of forest management alterna-
tives on multiple ecosystem attributes including cavity trees
(Sheriff 2002). In that study, forest conditions and CTD
were measured on 648 0.2-ha circular plots across nine sites
ranging from 314 to 516 ha (Shifley and Brookshire 2000).
We applied Model 6 and computed the relative error (RE) of
the CTD estimates for the nine MOFEP sites:

RE �
predicted CTD � observed CTD

observed CTD
. (8)

To assess the landscape size effect, we calculated the RE
for larger composite landscapes derived by randomly com-
bining multiple MOFEP sites and regressed RE against
landscape size. Because RE is a proportion ranging between
�1 and 1, we applied the arc sine square root transformation
before regression to stabilize the variance. (Neeter and
Wasserman 1974).

Results

When landscape size was �20 ha, the regression resid-
uals for Model 6 indicated a negative bias in estimated
CTD. For small landscapes, the estimated CTD was highly
variable and regression coefficients (Table 1) were impre-
cise. Some CTD estimates for landscapes �20 ha were even
negative, providing strong evidence that Model 6 was not
suitable for application to such small landscapes. When
landscape size was �20 ha, however, neither bias nor
nonnormality of the residuals was detected, indicating that
Model 6 was pertinent to describing the relationship be-
tween CTD and the proportions (w1, w2, and w3), respec-
tively, of the seedling/sapling, pole size, and sawtimber
stands on a landscape, given the four stand-age (size) clas-
sification system. As expected, the variation inherent in
Model 6, in terms of the magnitude of residuals, decreased
markedly as the landscape size increased (Figure 2), sug-
gesting that the precision of the estimated CTD increased
with increasing landscape size.

The R2 increased steeply from 0.35 to 0.98 as landscape
size increased from 10 to 100 ha, and then reached its
plateau (Figure 3). The RMSE changed in an inverse man-
ner. Coincidently, the estimated regression coefficients (�0,
�1, �2, and �3) of Model 6 varied considerably until the
landscape size increased to 100 ha (Table 1 and Figure 4).
As landscape size increased, the estimated parameters grad-
ually stabilized with small fluctuations around their asymp-
totic values. When the landscape size was �4,000 ha, the
variation in the regression coefficients had no practical
significance (Table 1). Based on the R2 and RMSE changes
(Figure 3) and the change of the estimated regression
parameters over landscape sizes (Table 1, Figure 4), the
minimum landscape size needed to estimate CTD with

Table 1. Means and standard errors of the estimated regression coefficients with increasing landscape size for Model 6: CTD � � 0 �
� 1w1 � � 2w2 � � 3w3, where CTD is mean cavity-tree density (trees per hectare) and the weights w1, w2, and w3 refer to the
proportion of the landscape in the seedling/sapling, pole, and sawtimber stand age classes, respectively. Coefficients are also
applicable with Model 7. Coefficients stabilize and standard errors decrease with increasing landscape size.

Landscape
Size (ha) �̂0 �̂1 �̂2 �̂3

...................................................................................... (mean � SE) ......................................................................................
10 24.0887 � 3.1940 �29.8616 � 4.7006 �26.9265 � 4.3649 �22.1897 � 4.6341
20 46.4155 � 1.0304 �49.5992 � 1.7879 �44.3411 � 1.6804 �40.7350 � 1.5569
40 46.3766 � 0.6555 �45.8921 � 1.0323 �38.7787 � 1.1322 �34.8532 � 0.9344
80 47.8386 � 0.3097 �44.6237 � 0.5195 �36.5778 � 0.5561 �34.7255 � 0.4995

100 48.2636 � 0.3219 �44.4470 � 0.4828 �36.2803 � 0.4220 �34.9586 � 0.4469
200 49.0499 � 0.1933 �43.8214 � 0.3109 �36.2782 � 0.3006 �34.8156 � 0.2933
400 49.4099 � 0.1125 �43.8730 � 0.1919 �36.6175 � 0.1877 �34.4817 � 0.1765
800 49.2287 � 0.0597 �43.4503 � 0.0958 �36.1104 � 0.0893 �34.0734 � 0.0783

1,000 49.3286 � 0.0480 �43.5254 � 0.0794 �36.2403 � 0.0740 �34.1347 � 0.0854
2,000 49.4547 � 0.0283 �43.6638 � 0.0495 �36.3601 � 0.0507 �34.1537 � 0.0448
4,000 49.4274 � 0.0211 �43.6150 � 0.0283 �36.3103 � 0.0389 �34.0894 � 0.0313
8,000 49.4635 � 0.0121 �43.6481 � 0.0181 �36.3426 � 0.0209 �34.1192 � 0.0203

10,000 49.4694 � 0.0094 �43.6527 � 0.0164 �36.3459 � 0.0147 �34.1189 � 0.0171
20,000 49.4600 � 0.0059 �43.6348 � 0.0102 �36.3307 � 0.0109 �34.1017 � 0.0099
40,000 49.4599 � 0.0048 �43.6327 � 0.0079 �36.3267 � 0.0081 �34.1001 � 0.0078
80,000 49.4609 � 0.0039 �43.6313 � 0.0051 �36.3275 � 0.0061 �34.1036 � 0.0052

100,000 49.4607 � 0.0030 �43.6307 � 0.0041 �36.3266 � 0.0049 �34.1037 � 0.0040
1,000,000 49.4612 � 0.0009 �43.6312 � 0.0015 �36.3271 � 0.0013 �34.1045 � 0.0014
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reasonable precision using Model 6 is 100 ha. To predict the
CTD on the landscapes 100–4,000 ha, the appropriate mod-
els should be chosen from Table 1 based on the correspond-
ing landscape size. For large landscapes (�4,000 ha), the
CTD was estimated as

CTD �#/ha� � 49.5 � 43.6w1 � 36.3w2 � 34.1w3 (9)

or

CTD �#/ha� � 5.9w1 � 13.2w2 � 15.4w3 � 49.5w4. (10)

Equations 9 and 10 are numerically equivalent, but the

coefficients in Equation 10 are interpretable as CTD for
each age class.

The RE of the predicted CTD based on Model 6 aver-
aged 8% for the nine MOFEP validation sites (314–516 ha),
but for sites 6 and 9, the model generated large RE of 29 and
�34%, respectively. When these sites were randomly com-
bined to represent larger landscapes, the range of RE values
was reduced fourfold and the mean relative error decreased
from 15 to 6% (equivalent to the decrease from 0.4 to 0.25
in the transformed RE shown in Figure 5). For the nine
combined MOFEP sites (nearly 4,000 ha), the calculated RE

Figure 2. Selected scatter plots of residuals against predicted CTD over landscape size. Note that scales for the y-axis differ among
graphs and the magnitude of the residuals decreases as landscape size (s) increases.

Figure 3. Change of the RMSE and adjusted R2 for landscapes
ranging from 10 to 10,000 ha (s). Based on the regression of
relative error against landscape size.

Figure 4. Change of the estimated regression parameters of
Model 9 for landscapes ranging from 10 to 400 ha. The vertical
bars show the 95% confidence interval of the estimated param-
eters based on 100 bootstrap replicates.
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was 4%. The transformed RE was significantly (P � 0.03)
and negatively correlated with the landscape size.

Discussion

Managers can readily apply Models 6 or 7 with the
coefficients in Table 1 to estimate CTD or total cavity
abundance for landscapes. The models perform poorly for
landscapes smaller than 100 ha. However, for larger land-
scapes they provide a simple method to estimate cavity
abundance based solely on knowledge of landscape area by
age class. The age classes used in the model (1–30, 31–50,
51–120, and �120 years) generally correspond to the
seedling/sapling, pole, sawtimber, and old-growth size
classes in central hardwood forests. These classes are com-
monly used in timber and wildlife management when more
detailed stand-age data are unavailable. Area by size class in
a given landscape is readily obtained typically from forest
inventory data, photogrametry, remote sensing, or even
visual inspection. Application of Models 6 or 7 is far
simpler than alternatives such as field inventory of cavities
on large landscapes (e.g., Jensen et al. 2002) or applying
stand-based models of cavity abundance across each new
landscape of interest (e.g., Fan et al. 2003a).

The regression coefficients in Model 10 explicitly reveal
the relative contributions of seedling/sapling, pole, sawtim-
ber, and old-growth areas to cavity-tree abundance. Old-
growth areas are expected to average 49.5 cavity trees per
hectare, more than three times the number found in the
sawtimber (15.4/ha), pole (13.2/ha), or seedling/sapling
(5.9/ha) age classes. These estimates make it easy for man-
agers to explore the effect of different age-class distribu-
tions on mean cavity-tree abundance at the landscape scale
as a prelude to detailed, site-specific planning. For example,
based on Model 10, the minimum proportion of old-growth
area on a large landscape should not be less than 6% to meet
a target of 17 cavity trees/ha. Routine cavity inventories
tend to overlook cavities (Jensen et al. 2002). Consequently,
the CTD values used to build and evaluate these models are
considered conservative estimates.

The use of computer simulation permitted the evaluation
of a wide range of age-class combinations and landscape
sizes. This extended the utility of the limited quantity of
cavity-tree data. It would have been impossible to infer the
relationship between CTD and landscape-age composition
using either experiments or survey methods. The cost and
time to obtain a large sample of cavity-tree estimates for
multiple landscapes is prohibitive.

Because of the stochastic nature of cavity-tree distribu-
tion and the bootstrap data-generating method, the esti-
mated parameters for Model 6 (Table 1) varied significantly
(P � 0.01) when the landscape was less than 100 ha. As
landscape size increased, the estimated parameters gradu-
ally approached their asymptotic values and fluctuated
around these values (Table 1). The model should not be
applied to landscapes less than 100 ha. When the landscape
size is 100–4,000 ha, the equation coefficients correspond-
ing to the target landscape size (Table 1) should be used to
predict CTD. For large landscapes (�4,000 ha), either of the
general models, 9 or 10, can be applied.

Test results based on data from nine independent
MOFEP sites ranging from 300 to 500 ha (Jensen et al.
2002) showed that Model 6 could over- and underestimate
the CTD for an individual site by more than 30%. But for
most sites (7 out of 9), the RE ranged from 2 to 17% with
a mean RE of 8% for all nine sites. As shown by Figure 5,
landscape size is an important factor affecting prediction
precision as indicated by the RE values. For the entire nine
MOFEP sites (nearly 4,000 ha), the calculated RE was only
4%. Because of lack of replication, we cannot tell whether
the small RE is by chance. However, we randomly chose 5,
6, 7, and 8 sites and combined them to form 4 new land-
scapes ranging from 2,000 to 3,300 ha. The calculated RE
for them ranged from 2 to 16%, with a mean of 7%. With
large landscapes (�4,000 ha), the precision of Model 6 will
be improved as the landscape components increase in size.

Figure 5. The transformed RE versus landscape size when Model 6 and Table 1 are used to
estimate cavity-tree density per hectare for individual MOFEP validation sites and groups of
MOFEP sites in combination to form various landscape sizes.
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Conclusions

The CTD in a landscape is closely related to the stand-
age composition (structure) of the landscape and can be
estimated by a simple model based on the proportions of the
seedling/sapling (0–30 years), pole (31–50 years), sawtim-
ber (51–120 years), and old-growth (�120 years) age
classes in the landscape. The model has low precision for
landscapes �100 ha, but for larger landscapes the variabil-
ity of estimated CTD decreases rapidly with increasing
landscape size. The model presents a simple technique to
analyze cavity-tree abundance and dynamics on a land-
scape. We calibrated the model for Missouri, but the tech-
nique can be applied in other regions.

Tests with independent data sets indicate that the CTD
model was significantly affected by the landscape size. For
nine independent validation sites (MOFEP sites ranging
300–500 ha), the relative error of CTD prediction averaged
8%, but with two sites it exceeded 30%. Relative error
decreased with landscape size, and the composite relative
error for the entire MOFEP study landscape (nearly 4,000
ha) was 4%.
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